Archive




Volume 4, Issue 6, December 2015, Page: 424-430
Boundary Layer Flow and Heat Transfer of Micropolar Fluid over a Vertical Exponentially Stretched Cylinder
Abdul Rehman, Department of Mathematics, University of Balochistan, Quetta, Pakistan
Razmak Bazai, Department of Mathematics, University of Balochistan, Quetta, Pakistan
Sallahuddin Achakzai, Department of Mathematics, University of Balochistan, Quetta, Pakistan
Saleem Iqbal, Department of Mathematics, University of Balochistan, Quetta, Pakistan
Muhammad Naseer, Department of Mathematics, Quaid-i-Azam University, Islamabad, Pakistan
Received: Sep. 14, 2015;       Accepted: Sep. 26, 2015;       Published: Oct. 15, 2015
DOI: 10.11648/j.acm.20150406.15      View  3641      Downloads  105
Abstract
The current paper offers an analysis of the steady boundary layer flow and heat transfer of a non-Newtonian micropolar fluid flowing through a vertical exponentially stretching cylinder along its axial axis. The obtained system of nonlinear partial differential equations along with the appropriate boundary conditions is abridged to dimensionless form by means of the boundary layer estimates and a suitable similarity transformation. The subsequent nonlinear coupled system of ordinary differential equations subject to the appropriate boundary conditions is solved numerically with the help of Keller-box method. The effects of the involved parameters are presented through graphs. The allied physical features for the flow and heat transfer characteristics that is the skinfriction coefficient and Nusselt numbers are presented for different parameters.
Keywords
Boundary Layer Flow, Vertical Cylinder, Micropolar Fluid, Heat Dissipation, Keller-Box Method
To cite this article
Abdul Rehman, Razmak Bazai, Sallahuddin Achakzai, Saleem Iqbal, Muhammad Naseer, Boundary Layer Flow and Heat Transfer of Micropolar Fluid over a Vertical Exponentially Stretched Cylinder, Applied and Computational Mathematics. Vol. 4, No. 6, 2015, pp. 424-430. doi: 10.11648/j.acm.20150406.15
Reference
[1]
A. C. Eringen, Theory of micropolar fluid, J. Math. Mech. 16 (1966) 1-18.
[2]
H. Rosali, A. Ishak, I. Pop, Micropolar fluid flow towards a stretching/shrinking sheet in a porous medium with suction, Int. Commun. Heat Mass Tran. 39 (2012) 826-829.
[3]
H. A. Attia, Heat transfer in a stagnation point flow of a micropolar fluid over a stretching surface with heat generation/absorption, Tamkang J. Sci. Eng. 9 (4) (2006) 299-305.
[4]
R. Nazar, A. Ishak, I. Pop, Unsteady boundary layer flow over a stretching sheet in a micropolar fluid, Int. J. Eng. App. Sci. 4 (7) (2008) 406-410.
[5]
S. Nadeem, Abdul Rehman, K. Vajravelu, J. Lee, C. Lee, Axisymmetric stagnation flow of a micropolar nanofluid in a moving cylinder, Math. Prob. Eng. Volume 2012 (2012), Article ID 378259, 17 pages, doi:10.1155/2012/378259.
[6]
S. Nadeem, N. S. Akbar, M. Y. Malik, Exact and numerical solutions of a micropolar fluid in a vertical Annulus, Num. Meth. Part. Diff. Equ. 26 (2010) 1660-1674.
[7]
A. Ishak, R. Nazar, I. Pop, Magnetohydrodynamic stagnation point flow towards a stretching vertical sheet in a micropolar fluid, Magnetohydrodynamics, 43 (1) (2007) 83-97.
[8]
A. Ishak, R. Nazar, I. Pop, Heat transfer over a stretching surface with variable surface heat flux in micropolar fluids, Phys. Lett. A, 372 (2008) 559-561.
[9]
S. Nadeem, M. Hussain, M. Naz, MHD Stagnation flow of a micropolar fluid through porous medium, Meccanica 45 (2010) 869-880.
[10]
S. Nadeem, S. Abbasbandy, M. Hussain, Series solutions of boundary layer flow of a Micropolar fluid near the stagnation point towards a shrinking sheet, Zeitschrift fur Naturforschung. 64a (2009) 575-582.
[11]
N. Bachok, A. Ishak, Flow and heat transfer over a stretching cylinder with prescribed surface heat flux, Malaysian Journal of Mathematical Sciences 4 (2) (2010) 159-169.
[12]
T. G. Fang, J. Zhang, Y. F. Zhong, H. Tao, Unsteady viscous flow over an expanding stretching cylinder, Chin. Phys. Lett. 28 (12) (2011) 124707-1-4.
[13]
T. Fang, S. Yao, Viscous swirling flow over a stretching cylinder, Chin. Phys. Lett. 28 (11) (2011) 114702-1-4.
[14]
C. Y. Wang, Natural convection on a vertical stretching cylinder, Commun. Nonlinear Sci. Numer. Simulat, 17 (2012) 1098-1103.
[15]
B. J. Gireesha, B. Mahanthesh, P. T. Manjunatha, R. S. R. Gorla, Numerical solution for hydromagnetic boundary layer flow and heat transfer past a stretching surface embedded in non-Darcy porous medium with fluid-particle suspension, J. Nigerian Math. Society, doi:10.1016/j.jnnms.2015.07.003.
[16]
S. Mukhopadhyay, MHD boundary layer slip flow along a stretching cylinder, Ain Shams Eng. J. 4(2) (2013) 317-324.
[17]
Abdul Rehman, S. Nadeem, Heat Transfer Analysis of the Boundary Layer Flow over a Vertical Exponentially Stretching Cylinder, Global J. Sci. Frontier Res. Math. Decision Sci. 13(11) (2013) 73-85.
[18]
Abdul Rehman, S. Nadeem, S. Iqbal, M. Y. Malik, M. Naseer, Nanoparticle effect over the boundary layer flow over an exponentially stretching cylinder, Proc IMechE Part N: J Nanoengineering and Nanosystems, (2014) 1-6.
[19]
M. Naseer, M. Y. Malik, Abdul Rehman, Numerical Study of Convective Heat Transfer on the Power Law Fluid over a Vertical Exponentially Stretching Cylinder, Applied and Comp.Math. 4(5) (2015) 346-350.
[20]
X. Si, Lin Li, L. Zheng, X. Zhang, B. Liu, The exterior unsteady viscous flow and heat transfer due to a porous expanding stretching cylinder, Computers & Fluids, 105(10) (2014) 280-284.
[21]
K. Vajravelu, K. V. Prasad, S. R. Santhi, Axisymmetric magneto-hydrodynamic (MHD) flow and heat transfer at a non-isothermal stretching cylinder, App. Math. Comp. 219(8) (2012) 3993-4005.
[22]
H. B. Keller, Numerical methods in boundary layer theory, Annu. Rev. Fluid Mech. 10 (1978) 417-433.
[23]
T. Cebeci, P. Bradshaw, Physical and Computational Aspects of Convective Heat Transfer, springer-Verlag, New York, 1984.
[24]
S. Nadeem, Abdul Rehman, M. Y. Malik, Boundary layer stagnation-point flow of third grade fluid over an exponentially stretching sheet, Braz. Soci. Che. Eng, in press.
[25]
M. E. Ali, Heat transfer characteristics of a continuous stretching surface, Warme und Stoubertagung 29 (1994) 227-234.
Browse journals by subject